Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Induction of cerebral beta-amyloidosis: Intracerebral versus systemic A beta inoculation
 
research article

Induction of cerebral beta-amyloidosis: Intracerebral versus systemic A beta inoculation

Eisele, Yvonne S.
•
Bolmont, Tristan  
•
Heikenwalder, Mathias
Show more
2009
Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS)

Despite the importance of the aberrant polymerization of A beta in the early pathogenic cascade of Alzheimer's disease, little is known about the induction of A beta aggregation in vivo. Here we show that induction of cerebral beta-amyloidosis can be achieved in many different brain areas of APP23 transgenic mice through the injection of dilute A beta-containing brain extracts. Once the amyloidogenic process has been exogenously induced, the nature of the induced A beta-deposition is determined by the brain region of the host. Because these observations are reminiscent of a prion-like mechanism, we then investigated whether cerebral beta-amyloidosis also can be induced by peripheral and systemic inoculations or by the intracerebral implantation of stainless steel wires previously coated with minute amounts of A beta-containing brain extract. Results reveal that oral, intravenous, intraocular, and intranasal inoculations yielded no detectable induction of cerebral beta-amyloidosis in APP23 transgenic mice. In contrast, transmission of cerebral beta-amyloidosis through the A beta-contaminated steel wires was demonstrated. Notably, plasma sterilization, but not boiling of the wires before implantation, prevented the induction of beta-amyloidosis. Our results suggest that minute amounts of A beta-containing brain material in direct contact with the CNS can induce cerebral beta-amyloidosis, but that systemic cellular mechanisms of prion uptake and transport to the CNS may not apply to A beta.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés