Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Stochastic Gradient Descent for Spectral Embedding with Implicit Orthogonality Constraint
 
conference paper

Stochastic Gradient Descent for Spectral Embedding with Implicit Orthogonality Constraint

El Gheche, Mireille  
•
Chierchia, Giovanni
•
Frossard, Pascal  
2019
Proceedings of IEEE ICASSP
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

In this paper, we propose a scalable algorithm for spectral embedding. The latter is a standard tool for graph clustering. However, its computational bottleneck is the eigendecomposition of the graph Laplacian matrix, which prevents its application to large-scale graphs. Our contribution consists of reformulating spectral embedding so that it can be solved via stochastic optimization. The idea is to replace the orthogonality constraint with an orthogonalization matrix injected directly into the criterion. As the gradient can be computed through a Cholesky factorization, our reformulation allows us to develop an efficient algorithm based on mini-batch gradient descent. Experimental results, both on synthetic and real data, confirm the efficiency of the proposed method in term of execution speed with respect to similar existing techniques.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés