Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Reunion: Complexity-effective multicore redundancy
 
conference paper

Reunion: Complexity-effective multicore redundancy

Smolens, Jared C.
•
Gold, Brian T.
•
Falsafi, Babak  
Show more
2006
Proceedings of the International Symposium on Microarchitecture

To protect processor logic from soft errors, multicore redundant architectures execute two copies of a program on separate cores of a chip multiprocessor (CMP). Maintaining identical instruction streams is challenging because redundant cores operate independently, yet must still receive the same inputs (e.g., load values and shared-memory invalidations). Past proposals strictly replicate load values across two cores, requiring significant changes to the highly-optimized core. We make the key observation that, in the common case, both cores load identical values without special hardware. When the cores do receive different load values (e.g., due to a data race), the same mechanisms employed for soft error detection and recovery can correct the difference. This observation permits designs that relax input replication, while still providing correct redundant execution. In this paper, we present Reunion, an execution model that provides relaxed input replication and preserves the existing memory interface, coherence protocols, and consistency models. We evaluate a CMP-based implementation of the Reunion execution model with full-system, cycle-accurate simulation. We show that the performance overhead of relaxed input replication is only 5% and 6% for commercial and scientific workloads, respectively. © 2006 IEEE.

  • Files
  • Details
  • Metrics
Type
conference paper
DOI
10.1109/MICRO.2006.42
Author(s)
Smolens, Jared C.
Gold, Brian T.
Falsafi, Babak  
Hoe, James C.
Date Issued

2006

Published in
Proceedings of the International Symposium on Microarchitecture
Start page

223

End page

234

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
PARSA  
Event placeEvent date
Available on Infoscience
April 6, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/36950
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés