Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Active acoustic resonators with reconfigurable resonance frequency, absorption, and bandwidth
 
research article

Active acoustic resonators with reconfigurable resonance frequency, absorption, and bandwidth

Koutserimpas, Theodoros  
•
Rivet, Etienne  
•
Lissek, Hervé  
Show more
November 27, 2019
Physical Review Applied

Acoustic resonators play a key role in the development of subwavelength-sized technologies capable of interacting with airborne audible sound, from its emission and absorption to its manipulation and processing. Specifically, artificial acoustic media made from an ensemble of subwavelength resonators, namely, acoustic metamaterials and metasurfaces, have enabled sound manipulation possibilities well beyond what is typically achievable using natural materials. Yet, the transition of such concepts from physics-driven explorations to practical applications has been drastically hindered by the major difficulty in controlling the resonance frequency, absorption level, and bandwidth of these resonators, making acoustic metamaterials often too narrowband, or sensitive to disorder and absorption losses. Here, we demonstrate the relevance of active electroacoustic resonators to address such limitations. We propose a feedback control scheme for loudspeakers (used as acoustic scatterers), which involves passband current control based on real-time sensing and processing of the pressure signal by field-programmable gate-array technologies. We demonstrate externally reconfigurable subwavelength acoustic resonators with independently tunable levels of absorption (including near-zero and near-one), bandwidth, and resonance frequency. We believe that this work demonstrates a viable route to overcome the current limitations of metamaterials and enable their practical applications.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1103/PhysRevApplied.12.054064
Author(s)
Koutserimpas, Theodoros  
Rivet, Etienne  
Lissek, Hervé  
Fleury, Romain  
Date Issued

2019-11-27

Publisher

American Physical Society (APS)

Published in
Physical Review Applied
Volume

12

Issue

5

Article Number

054064

Subjects

Acoustic measurements

•

Signal processing

•

Metamaterials

•

Resonators

•

Active systems

•

Feedback control

•

Reconfigurability

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LWE  
LTS2  
Available on Infoscience
November 27, 2019
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/163424
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés