Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Handwritten Digit Recognition with Binary Optical Perceptron
 
report

Handwritten Digit Recognition with Binary Optical Perceptron

Saxena, Indu
•
Moerland, Perry
•
Fiesler, Emile
Show more
1997

Binary weights are favored in electronic and optical hardware implementations of neural networks as they lead to improved system speeds. Optical neural networks based on fast ferroelectric liquid crystal binary level devices can benefit from the many orders of magnitudes improved liquid crystal response times. An optimized learning algorithm for all-positive perceptrons is simulated on a limited data set of hand-written digits and the resultant network implemented optically. First, gray-scale and then binary inputs and weights are used in recall mode. On comparing the results for the example data set, the binarized inputs and weights network shows almost no loss in performance.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

rr97-15.pdf

Access type

openaccess

Size

164.88 KB

Format

Adobe PDF

Checksum (MD5)

91fb26cceba25da6ba139445491d64cc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés