Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Programmable Self-assembly with Chained Soft Cells: An Algorithm to Fold into 2-D Shapes
 
conference paper

Programmable Self-assembly with Chained Soft Cells: An Algorithm to Fold into 2-D Shapes

Germann, Jürg
•
Auerbach, Joshua
•
Floreano, Dario  
Del Pobil, Angel P.
•
Chinellato, Eris
Show more
2014
From Animals to Animats 13
Simulation of Adaptive Behavior 2014

Programmable self-assembly of chained modules holds potential for the automatic shape formation of morphologically adapted robots. However, current systems are limited to modules of uniform rigidity, which restricts the range of obtainable morphologies and thus the functionalities of the system. To address these challenges, we previously introduced soft cells as modules that can obtain different mechanical softness pre-setting. We showed that such a system can obtain a higher diversity of morphologies compared to state-of-the-art systems and we illustrated the system's potential by demonstrating the self-assembly of complex morphologies. In this paper, we extend our previous work and present an automatic method that exploits our system's capabilities in order to find a linear chain of soft cells that self-folds into a target 2-D shape.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

main.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

1.43 MB

Format

Adobe PDF

Checksum (MD5)

fb9cf7ce8c0f696cd58650d5c9fccd06

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés