Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Adaptive Networks
 
research article

Adaptive Networks

Sayed, Ali H.  
2014
Proceedings of the IEEE

This paper surveys recent advances related to adaptation, learning, and optimization over networks. Various distributed strategies are discussed that enable a collection of networked agents to interact locally in response to streaming data and to continually learn and adapt to track drifts in the data and models. Under reasonable technical conditions on the data, the adaptive networks are shown to be mean square stable in the slow adaptation regime, and their mean square error performance and convergence rate are characterized in terms of the network topology and data statistical moments. Classical results for single-agent adaptation and learning are recovered as special cases. The performance results presented in this work are useful in comparing network topologies against each other, and in comparing adaptive networks against centralized or batch implementations. The presentation is complemented with various examples linking together results from various domains.

  • Details
  • Metrics
Type
research article
DOI
10.1109/JPROC.2014.2306253
Author(s)
Sayed, Ali H.  
Date Issued

2014

Publisher

IEEE

Published in
Proceedings of the IEEE
Volume

102

Issue

4

Start page

460

End page

497

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ASL  
Available on Infoscience
December 19, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/143376
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés