Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Uniform Analysis for Communicating Timed Systems (Extended Technical Report)
 
report

Uniform Analysis for Communicating Timed Systems (Extended Technical Report)

Hojjat, Hossein  
•
Ruemmer, Philipp
•
Subotic, Pavle
Show more
2013

Languages based on the theory of timed automata are a well established approach for modelling and analysing real-time systems, with many applications both in an industrial and academic context. Model checking for timed automata has been studied extensively during the last two decades; however, even now industrial-grade model checkers are available only for few timed automata dialects (in particular UPPAAL timed automata), exhibit limited scalability for systems with large discrete state space, and cannot handle parametrised systems, or systems with unboundedly many processes. Leveraging recent advances of general-purpose fixed-point engines, we present a flexible method for translating networks of timed automata to Horn constraints, which can then be solved via of-the-shelf solvers. The resulting analysis method is fully symbolic and applicable to systems with large or infinite discrete state space, can be extended to include various language features, for instance UPPAAL-style communication/broadcast channels and BIP-style interactions, and can analyse systems with infinite parallelism. Experiments with timed automata models demonstrate the feasibility of the method.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés