Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Power Analysis Resilient SRAM Design Implemented with a 1% Area Overhead Impedance Randomization Unit for Security Applications
 
conference paper

Power Analysis Resilient SRAM Design Implemented with a 1% Area Overhead Impedance Randomization Unit for Security Applications

Giterman, Robert  
•
Wicentowski, Maoz
•
Chertkow, Oron
Show more
January 1, 2019
Ieee 45Th European Solid State Circuits Conference (Esscirc 2019)
IEEE 45th European Solid State Circuits Conference (ESSCIRC)

Power analysis attacks are an effective tool to extract sensitive information using side-channel analysis, forming a serious threat to IoT systems-on-a-chip (SoCs). Embedded memories implemented with conventional 6T SRAM macrocells often dominate the area and power of these SoCs. In this paper, for the first time, we use silicon measurements to prove that conventional SRAM arrays leak valuable information and that their data can be extracted using power analysis attacks. In order to provide a power analysis resilient embedded memory and adhere to the area constraints of modern SoCs, we implement a low-cost impedance randomization unit, which is integrated into the periphery of a conventional 6T SRAM macro. Preliminary silicon measurements of a 55 nm test-chip implementing the proposed memory array demonstrate a significant information leakage reduction at a low-cost 1% area overhead and no speed and power penalties compared to a conventional SRAM design.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés