Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Acoustic impedance synthesis at the diaphragm of moving coil loudspeakers using output feedback control
 
conference paper

Acoustic impedance synthesis at the diaphragm of moving coil loudspeakers using output feedback control

Boulandet, Romain  
•
Lissek, Hervé  
2011
Proceedings of the 18th International Congress on Sound and Vibration
ICSV18

This paper discusses a time-domain technique for synthesizing acoustic impedance at the diaphragm of a loudspeaker using a proportional-plus-derivative output feedback. The dynamics of electroacoustic transducers such as moving-coil loudspeakers can be readily controlled either by direct feedback principle on acoustic quantities, or by plugging a shunt network at the electrical terminals. Any conventional loudspeaker first intended to be a sound transmitter may then become a versatile electroacoustic resonator capable of absorbing (or of reflecting as much) the incident sound energy in a frequency-dependent way by simple electronic controls. Instead of counteracting some unwanted sound by using superposition principle, as is the case for conventional active noise control, such actuator-based strategy aims at monitoring the reaction of a loudspeaker embedded into walls so as to control the proportion of reflected sound waves on this boundary. After a short description of the dynamics of moving-coil loudspeakers giving emphasis on the advantage of electromechanical coupling reversibility, a proportional plus derivative output feedback combined to a feed-forward action is proposed for synthesizing of desired acoustic impedance. As a conclusion, the overall performance of the proposed method is presented along with computed results and general discussions on practical implementation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ICSV18_Boulandet_Impedance synthesis.pdf

Access type

openaccess

Size

723.34 KB

Format

Adobe PDF

Checksum (MD5)

d2d161164036dbcf3b2589b326691a27

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés