Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Semi-supervised Meeting Event Recognition with Adapted HMMs
 
report

Semi-supervised Meeting Event Recognition with Adapted HMMs

Zhang, Dong
•
Gatica-Perez, Daniel  
•
Bengio, Samy  
2005

This paper investigates the use of unlabeled data to help labeled data for audio-visual event recognition in meetings. To deal with situations in which it is difficult to collect enough labeled data to capture event characteristics, but collecting a large amount of unlabeled data is easy, we present a semi-supervised framework using HMM adaptation techniques. Instead of directly training one model for each event, we first train a well-estimated general event model for all events using both labeled and unlabeled data, and then adapt the general model to each specific event model using its own labeled data. We illustrate the proposed approach with a set of eight audio-visual events defined in meetings. Experiments and comparison with the fully-supervised baseline method show the validity of the proposed semi-supervised approach.

  • Files
  • Details
  • Metrics
Type
report
Author(s)
Zhang, Dong
Gatica-Perez, Daniel  
Bengio, Samy  
Date Issued

2005

Publisher

IDIAP

Subjects

vision

•

zhang

Note

Published in ``Prof. IEEE ICME'', July, 2005

URL

URL

http://publications.idiap.ch/downloads/reports/2005/rr-05-15.pdf
Written at

EPFL

EPFL units
LIDIAP  
Available on Infoscience
March 10, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/228755
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés