Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Micelles for delivery of nitric oxide
 
research article

Micelles for delivery of nitric oxide

Jo, Yun Suk
•
van der Vlies, André J
•
Gantz, Jay
Show more
2009
Journal of the American Chemical Society

We designed block copolymer pro-amphiphiles and amphiphiles for providing very long-term release of nitric oxide (NO). A block copolymer of N-acryloylmorpholine (AM, as a hydrophile) and N-acryloyl-2,5-dimethylpiperazine (AZd, as a hydrophilic precursor) was synthesized. The poly(N-acryloyl-2,5-dimethylpiperazine) (PAZd) is water-soluble, but chemical reaction of the secondary amines with NO to form a N-diazeniumdiolate (NONOate) converts the hydrophilic PAZd into a hydrophobic poly(sodium-1-(N-acryloyl-2,5-dimethylpiperazin-1-yl)diazen-1-ium-1,2-diolate) (PAZd.NONOate), driving aggregation. The PAM block guides this process toward micellization, rather than precipitation, yielding ca. 50 nm spherical micelles. The hydrophobic core of the micelle shielded the NONOate from the presence of water, and thus protons, which are required for NO liberation, delaying release to a remarkable 7 d half-life. Release of the NO returned the original soluble polymer. The very small NO-loaded micelles were able to penetrate complex tissue structures, such as the arterial media, opening up a number of tissue targets to NO-based therapy.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés