Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Predicting party switching through machine learning and open data
 
research article

Predicting party switching through machine learning and open data

Meneghetti, Nicolo
•
Pacini, Fabio
•
Dal Monte, Francesca Biondi
Show more
July 21, 2023
Iscience

Parliament dynamics might seem erratic at times. Predicting future voting patterns could support policy design based on the simulation of voting scenarios. The availability of open data on legislative activities and machine learning tools might enable such prediction. In our paper, we provide evidence for this statement by developing an algorithm able to predict party switching in the Italian Parliament with over 70% accuracy up to two months in advance. The analysis was based on voting data from the XVII (2013-2018) and XVIII (2018-2022) Italian legislature. We found party switchers exhibited higher participation in secret ballots and showed a progressive decrease in coherence with their party's majority votes up to two months before the actual switch. These results show how machine learning combined with political open data can support predicting and understanding political dynamics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S2589004223011756-main.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

6.49 MB

Format

Adobe PDF

Checksum (MD5)

3a14069796c1caf88eab236cd23eaa7a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés