Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Structural investigation of ACE2 dependent disassembly of the trimeric SARS-CoV-2 Spike glycoprotein
 
research article

Structural investigation of ACE2 dependent disassembly of the trimeric SARS-CoV-2 Spike glycoprotein

Ni, Dongchun
•
Lau, Kelvin  orcid-logo
•
Lehmann, Frank
Show more
October 12, 2020
bioRxiv

The human membrane protein Angiotensin-converting enzyme 2 (hACE2) acts as the main receptor for host cells invasion of the new coronavirus SARS-CoV-2. The viral surface glycoprotein Spike binds to hACE2, which triggers virus entry into cells. As of today, the role of hACE2 for virus fusion is not well understood. Blocking the transition of Spike from its prefusion to post-fusion state might be a strategy to prevent or treat COVID-19. Here we report a single particle cryo-electron microscopy analysis of SARS-CoV-2 trimeric Spike in presence of the human ACE2 ectodomain. The binding of purified hACE2 ectodomain to Spike induces the disassembly of the trimeric form of Spike and a structural rearrangement of its S1 domain to form a stable, monomeric complex with hACE2. This observed hACE2 dependent dissociation of the Spike trimer suggests a mechanism for the therapeutic role of recombinant soluble hACE2 for treatment of COVID-19.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés