Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Robust Unsupervised Gaze Calibration Using Conversation and Manipulation Attention Priors
 
research article

Robust Unsupervised Gaze Calibration Using Conversation and Manipulation Attention Priors

Siegfried, Remy  
•
Odobez, Jean-Marc  
January 1, 2022
Acm Transactions On Multimedia Computing Communications And Applications

Gaze estimation is a difficult task, even for humans. However, as humans, we are good at understanding a situation and exploiting it to guess the expected visual focus of attention of people, and we usually use this information to retrieve people's gaze. In this article, we propose to leverage such situation-based expectation about people's visual focus of attention to collect weakly labeled gaze samples and perform person-specific calibration of gaze estimators in an unsupervised and online way. In this context, our contributions are the following: (i) we show how task contextual attention priors can be used to gather reference gaze samples, which is a cumbersome process otherwise; (ii) we propose a robust estimation framework to exploit these weak labels for the estimation of the calibration model parameters; and (iii) we demonstrate the applicability of this approach on two human-human and human-robot interaction settings, namely conversation and manipulation. Experiments on three datasets validate our approach. providing insights on the priors effectiveness and on the impact of different calibration models, particularly the usefulness of taking head pose into account.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés