Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Team Policy Learning For Multi-Agent Reinforcement Learning
 
conference paper

Team Policy Learning For Multi-Agent Reinforcement Learning

Cassano, Lucas  
•
Alghunaim, Sulaiman A.  
•
Sayed, Ali H.  
January 1, 2019
2019 Ieee International Conference On Acoustics, Speech And Signal Processing (Icassp)
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

This work presents a fully distributed algorithm for learning the optimal policy in a multi-agent cooperative reinforcement learning scenario. We focus on games that can only be solved through coordinated team work. We consider situations in which K players interact simultaneously with an environment and with each other to attain a common goal. In the algorithm, agents only communicate with other agents in their immediate neighborhood and choose their actions independently of one another based only on local information. Learning is done off-policy, which results in high data efficiency. The proposed algorithm is of the stochastic primal-dual kind and can be shown to converge even when used in conjunction with a wide class of function approximators.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés