Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Estimating Image Depth in the Comics Domain
 
conference paper

Estimating Image Depth in the Comics Domain

Bhattacharjee, Deblina  
•
Everaert, Martin Nicolas  
•
Salzmann, Mathieu  
Show more
2021
2022 Ieee Winter Conference On Applications Of Computer Vision (Wacv 2022)
22nd IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)

Estimating the depth of comics images is challenging as such images a) are monocular; b) lack ground-truth depth annotations; c) differ across different artistic styles; d) are sparse and noisy. We thus, use an off-the-shelf unsupervised image to image translation method to translate the comics images to natural ones and then use an attention-guided monocular depth estimator to predict their depth. This lets us leverage the depth annotations of existing natural images to train the depth estimator. Furthermore, our model learns to distinguish between text and images in the comics panels to reduce text-based artefacts in the depth estimates. Our method consistently outperforms the existing state-ofthe-art approaches across all metrics on both the DCM and eBDtheque images. Finally, we introduce a dataset to evaluate depth prediction on comics. Our code and annotated dataset will be made publicly available

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

WACV_Estimating_Image_Depth_in_the_Comics_Domain-Main.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

MIT License

Size

11.24 MB

Format

Adobe PDF

Checksum (MD5)

a3ef55902e80c52b70f345fa66d19ae4

Loading...
Thumbnail Image
Name

WACV_Estimating_Image_Depth_in_the_Comics_Domain-Supplementary.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

MIT License

Size

3.43 MB

Format

Adobe PDF

Checksum (MD5)

cd9229add61867026f93ca8da4eb31dd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés