Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Enhanced Photovoltaic Performance of Nanowire Dye-Sensitized Solar Cells Based on Coaxial TiO2@TiO Heterostructures with a Cobalt(II/III) Redox Electrolyte
 
research article

Enhanced Photovoltaic Performance of Nanowire Dye-Sensitized Solar Cells Based on Coaxial TiO2@TiO Heterostructures with a Cobalt(II/III) Redox Electrolyte

Fan, Jiandong
•
Fabrega, Cristian
•
Zamani, Reza
Show more
2013
ACS Applied Materials & Interfaces

The growth of a TiO shell at the surface of TiO2 nanowires allowed us to improve the power conversion efficiency of nanowire-based dye-sensitized solar cells by a factor 2.5. TiO2@TiO core-shell nanowires were obtained by a two-step process. First, rutile-phase TiO2 nanowires were hydrothermally grown. Second, a hongquiite-phase TiO shell was electrochem. deposited at the surface of the TiO2 nanowires. Bare TiO2 and heterojunction TiO2@TiO nanowire-based dye-sensitized solar cells were obtained using a cobalt(II/III) redox electrolyte and LEG4 as the dye. With this electrolyte/dye combination, dye-sensitized solar cells with outstanding open-circuit voltage values above 900 mV were systematically obtained. While TiO2@TiO nanowire-based dye-sensitized solar cells had slightly lower open-circuit voltage values than bare TiO2 nanowire-based dye-sensitized solar cells, they provided 3-fold higher photocurrents, overall reaching 2.5-fold higher power conversion efficiencies. The higher photocurrents were assocd. with the larger surface roughness and an enhanced charge-carrier sepn./transfer at the nanowire/dye interface.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés