Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Adversarial Confidence Estimation Networks for Robust Stereo Matching
 
research article

Adversarial Confidence Estimation Networks for Robust Stereo Matching

Kim, Sunok
•
Min, Dongbo
•
Kim, Seungryong  
Show more
November 1, 2021
IEEE Transactions on Intelligent Transportation Systems

Stereo matching aiming to perceive the 3-D geometry of a scene facilitates numerous computer vision tasks used in advanced driver assistance systems (ADAS). Although numerous methods have been proposed for this task by leveraging deep convolutional neural networks (CNNs), stereo matching still remains an unsolved problem due to its inherent matching ambiguities. To overcome these limitations, we present a method for jointly estimating disparity and confidence from stereo image pairs through deep networks. We accomplish this through a minmax optimization to learn the generative cost aggregation networks and discriminative confidence estimation networks in an adversarial manner. Concretely, the generative cost aggregation networks are trained to accurately generate disparities at both confident and unconfident pixels from an input matching cost that are indistinguishable by the discriminative confidence estimation networks, while the discriminative confidence estimation networks are trained to distinguish the confident and unconfident disparities. In addition, to fully exploit complementary information of matching cost, disparity, and color image in confidence estimation, we present a dynamic fusion module. Experimental results show that this model outperforms the state-of-the-art methods on various benchmarks including real driving scenes.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés