Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Monte-Carlo utility estimates for Bayesian reinforcement learning
 
report

Monte-Carlo utility estimates for Bayesian reinforcement learning

Dimitrakakis, Christos  
2013

This paper introduces a set of algorithms for Monte-Carlo Bayesian reinforcement learning. Firstly, Monte-Carlo estimation of upper bounds on the Bayes-optimal value function is employed to construct an optimistic policy. Secondly, gradient-based algorithms for approximate upper and lower bounds are introduced. Finally, we introduce a new class of gradient algorithms for Bayesian Bellman error minimisation. We theoretically show that the gradient methods are sound. Experimentally, we demonstrate the superiority of the upper bound method in terms of reward obtained. However, we also show that the Bayesian Bellman error method is a close second, despite its significant computational simplicity.

  • Files
  • Details
  • Metrics
Type
report
Author(s)
Dimitrakakis, Christos  
Date Issued

2013

Written at

EPFL

EPFL units
LIA  
Available on Infoscience
March 12, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/90250
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés