Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Large scale three dimensional simulations of hybrid block copolymer/nanoparticle systems
 
research article

Large scale three dimensional simulations of hybrid block copolymer/nanoparticle systems

Diaz, Javier  
•
Pinna, Marco
•
Zvelindovsky, Andrei V.
Show more
December 7, 2019
Soft Matter

Block copolymer melts self-assemble in the bulk into a variety of nanostructures, making them perfect candidates to template the position of nanoparticles. The morphological changes of block copolymers are studied in the presence of a considerable filling fraction of colloids. Furthermore, colloids can be found to assemble into ordered hexagonally close-packed structures in a defined number of layers when softly confined within the phase-separated block copolymer. A high concentration of interface-compatible nanoparticles leads to complex long-lived block copolymer morphologies depending on the polymeric composition. Macrophase separation between the colloids and the block copolymer can be induced if colloids are unsolvable within the matrix. This leads to the formation of ellipsoid-shaped polymer-rich domains elongated along the direction perpendicular to the interface between block copolymer domains.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés