Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Lagrangian decomposition scheme for choice-based optimization
 
research article

A Lagrangian decomposition scheme for choice-based optimization

Paneque, Meritxell Pacheco  
•
Gendron, Bernard
•
Azadeh, Shadi Sharif
Show more
December 1, 2022
Computers & Operations Research

Choice-based optimization problems are the family of optimization problems that incorporate the stochasticity of individual preferences according to discrete choice models to make planning decisions. This integration brings non-convexity and nonlinearity to the associated mathematical formulations. Previously, the authors have tackled these issues by introducing a simulation-based approximation of the choice model with the aim of linearizing it. Nevertheless, already existing exact methods and state-of-the-art commercial solvers fail to solve relevant instances. In this paper, we propose a novel Lagrangian decomposition method inspired by scenario decomposition and scenario grouping in the stochastic programming framework for the purpose of solving choice-based optimization problems. In addition, we develop a tailored algorithm to generate feasible solutions to the original problem from the solution of the Lagrangian subproblem. Hence, at each iteration of the subgradient method, which is used to solve the Lagrangian dual, we provide both an upper and a lower bound to the original problem. This enables the calculation of the duality gap to assess the quality of the generated solutions. Computational results show that the decomposition method provides solutions with optimality gaps below 0.5% and restricted duality gaps within low computational times. We also show that scenario grouping leads to high-quality feasible solutions and lower duality gaps.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés