Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Machine Learning Model of Chemical Shifts for Chemically and Structurally Diverse Molecular Solids
 
research article

A Machine Learning Model of Chemical Shifts for Chemically and Structurally Diverse Molecular Solids

Cordova, Manuel  
•
Engel, Edgar A.
•
Stefaniuk, Artur  
Show more
September 22, 2022
Journal Of Physical Chemistry C

Nuclear magnetic resonance (NMR) chemical shifts are a direct probe of local atomic environments and can be used to determine the structure of solid materials. However, the substantial computational cost required to predict accurate chemical shifts is a key bottleneck for NMR crystallography. We recently introduced ShiftML, a machine-learning model of chemical shifts in molecular solids, trained on minimum-energy geometries of materials composed of C, H, N, O, and S that provides rapid chemical shift predictions with density functional theory (DFT) accuracy. Here, we extend the capabilities of ShiftML to predict chemical shifts for both finite temperature structures and more chemically diverse compounds, while retaining the same speed and accuracy. For a benchmark set of 13 molecular solids, we find a root-mean-squared error of 0.47 ppm with respect to experiment for 1H shift predictions (compared to 0.35 ppm for explicit DFT calculations), while reducing the computational cost by over four orders of magnitude.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés