Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Online-Batch Strongly Convex Multi Kernel Learning
 
Loading...
Thumbnail Image
conference paper

Online-Batch Strongly Convex Multi Kernel Learning

Orabona, Francesco
•
Luo, Jie  
•
Caputo, Barbara  
2010
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Several object categorization algorithms use kernel methods over multiple cues, as they offer a principled ap- proach to combine multiple cues, and to obtain state-of-the- art performance. A general drawback of these strategies is the high computational cost during training, that prevents their application to large-scale problems. They also do not provide theoretical guarantees on their convergence rate. Here we present a Multiclass Multi Kernel Learning (MKL) algorithm that obtains state-of-the-art performance in a considerably lower training time. We generalize the standard MKL formulation to introduce a parameter that al- lows us to decide the level of sparsity of the solution. Thanks to this new setting, we can directly solve the problem in the primal formulation. We prove theoretically and experimen- tally that 1) our algorithm has a faster convergence rate as the number of kernels grow; 2) the training complexity is linear in the number of training examples; 3) very few iter- ations are enough to reach good solutions. Experiments on three standard benchmark databases support our claims.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés