Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Continuous Wavelet Transform on the Hyperboloid
 
research article

Continuous Wavelet Transform on the Hyperboloid

Bogdanova, I.  
•
Vandergheynst, P.  
•
Gazeau, J.
2007
Applied and Computational Harmonic Analysis

In this paper we build a Continuous Wavelet Transform (CWT) on the upper sheet of the 2-hyperboloid $H_+^2$. First, we define a class of suitable dilations on the hyperboloid through conic projection. Then, incorporating hyperbolic motions belonging to $SO_0(1,2)$, we define a family of hyperbolic wavelets. The continuous wavelet transform $W_f(a,x)$ is obtained by convolution of the scaled wavelets with the signal. The wavelet transform is proved to be invertible whenever wavelets satisfy a particular admissibility condition, which turns out to be a zero-mean condition. We then provide some basic examples and discuss the limit at null curvature.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés