Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Relation between palm and finger cortical representations in primary somatosensory cortex: A 7T fMRI study
 
research article

Relation between palm and finger cortical representations in primary somatosensory cortex: A 7T fMRI study

Akselrod, Michel  
•
Martuzzi, Roberto  
•
van der Zwaag, Wietske
Show more
February 23, 2021
Human Brain Mapping

Many studies focused on the cortical representations of fingers, while the palm is relatively neglected despite its importance for hand function. Here, we investigated palm representation (PR) and its relationship with finger representations (FRs) in primary somatosensory cortex (S1). Few studies in humans suggested that PR is located medially with respect to FRs in S1, yet to date, no study directly quantified the somatotopic organization of PR and the five FRs. Importantly, the link between the somatotopic organization of PR and FRs and their activation properties remains largely unexplored. Using 7T fMRI, we mapped PR and the five FRs at the single subject level. First, we analyzed the cortical distance between PR and FRs to determine their somatotopic organization. Results show that PR was located medially with respect to D5. Second, we tested whether the observed cortical distances would predict the relationship between PR and FRs activations. Using three complementary measures (cross-activations, pattern similarity and resting-state connectivity), we show that the relationship between PR and FRs activations were not determined by their somatotopic organization, that is, there was no gradient moving from D5 to D1, except for resting-state connectivity, which was predicted by the somatotopy. Instead, we show that the representational geometry of PR and FRs activations reflected the physical structure of the hand. Collectively, our findings suggest that the spatial proximity between topographically organized neuronal populations do not necessarily predicts their functional properties, rather the structure of the sensory space (e.g., the hand shape) better describes the observed results.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Human Brain Mapping - 2021 - Akselrod - Relation between palm and finger cortical representations in primary somatosensory.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC

Size

1.97 MB

Format

Adobe PDF

Checksum (MD5)

fd2d2b445c1c54059b203a3c85a4af04

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés