Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Microbiomes Through the Looking Glass
 
preprint

Microbiomes Through the Looking Glass

Pasqualini, Jacopo
•
Maritan, Amos
•
Rinaldo, Andrea  
Show more
April 11, 2025

Bacterial communities are pivotal to maintaining ecological function and preserving the rich tapestry of biological diversity. The rapid development of environmental sequencing technologies, such as metagenomics, has revolutionized our capacity to probe such diversity. However, despite these advances, a theoretical understanding connecting empirical data with ecosystem modelling, in particular in the framework of disordered systems akin to spin glasses, is still in its infancy. Here, we present a comprehensive framework using theories of disordered systems to decode microbiome data, which offers insight into the ecological forces that shape macroecological states. By employing the quenched disordered generalized Lotka-Volterra model, we analyze species abundance data in healthy and diseased human gut microbiomes. Results reveal the emergence of two distinct patterns of species-interaction networks, elucidating the pathways through which dysbiosis may drive microbiome instability. Interaction patterns thus provide a window into the systemic shifts accompanying the transition from health to disease, offering a new perspective on the dynamics of the microbial community. Our findings suggest the potential of disordered systems theory to characterize microbiomes by capturing the essence of ecological interactions and their consequences on stability and functioning, leveraging our understanding of the linkages of dysbiosis and microbial dynamics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2406.07465v1.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY

Size

1.13 MB

Format

Adobe PDF

Checksum (MD5)

f2bdb0ba4d84b6694254925dced0b034

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés