Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Networks of Mixed Canonic-Dissipative Systems and Dynamic Hebbian Learning
 
conference paper

Networks of Mixed Canonic-Dissipative Systems and Dynamic Hebbian Learning

Rodriguez, Julio  
•
Hongler, Max-Olivier  
Kyamakya, Kyandoghere
2008
Proceedings of INDS'08, First International Workshop on Nonlinear Dynamics and Synchronization 2008 (INDS'08)
First International Workshop on Nonlinear Dynamics and Synchronization (INDS'08)

We consider a collection {O_k}_{k=1}^N of interacting parametric mixed canonical-dissipative systems, (MCD). Each individual Ok, exhibits, in absence of interaction, a limit cycle L_k on which the orbit circulation is parameterized by w_k(t). The underlying network defining the interactions between the O_k’s is assumed to possess a diffusive Laplacian matrix. For each O_k, we construct a class of position- and velocity-dependent interactions which lead to a dynamic learning process of the Hebbian type (DHL). More precisely, the interactions affect the circulation parameterization w_k(t) and the DHL mechanisms manifests itself by asymptotically driving the system towards a consensual (oscillatory) global state in which all O_k share a common circulation parameterization !c. It is remarkable that for our class of interactions, we are able to analytically calculate w_c which, in our case, is independent of the topology of the connecting network. However, the coupling network topology explicitly controls the relaxation rate via the spectral gap of the underlying adjacency matrix (i.e. the so called Fiedler number of the associated graph). Finally, we report several numerical illustrations which enable to observe the DHL mechanisms at work and confirm our theoretical assertions.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés