Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Noise facilitation in associative memories of exponential capacity
 
research article

Noise facilitation in associative memories of exponential capacity

Karbasi, Amin  
•
Salavati, Amir Hesam  
•
Varshney, Lav R.
Show more
2014
Journal of Neural Computation

Recent advances in associative memory design through structured pattern sets and graph-based inference al- gorithms have allowed reliable learning and recall of an exponential number of patterns. Although these designs correct external errors in recall, they assume neurons that compute noiselessly, in contrast to the highly variable neurons in brain regions thought to operate associatively such as hippocampus and olfactory cortex. Here we consider associative memories with noisy internal computations and analytically characterize performance. As long as the internal noise level is below a specified threshold, the error probability in the recall phase can be made exceedingly small. More surprisingly, we show that internal noise actually improves the performance of the recall phase while the pattern retrieval capacity remains intact, i.e., the number of stored patterns does not reduce with noise (up to a threshold). Computational experiments lend additional support to our theoretical analysis. This work suggests a functional benefit to noisy neurons in biological neuronal networks.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

NC_2014.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

855.04 KB

Format

Adobe PDF

Checksum (MD5)

449227c5b9b1a86382152b3b16f570a8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés