Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Deep Neural Networks for seeing through multimode fibers
 
conference paper

Deep Neural Networks for seeing through multimode fibers

Kakkava, Eirini  
•
Borhani, Navid  
•
Moser, Christophe  
Show more
January 1, 2019
High-Speed Biomedical Imaging And Spectroscopy Iv
Conference on High-Speed Biomedical Imaging and Spectroscopy IV

Image delivery through multimode fibers (MMFs) suffers from modal scrambling which results in a speckle pattern at the fiber output. In this work, we use Deep Neural Networks (DNNs) for recovery and/or classification of the input image from the intensity-only images of the speckle patterns at the distal end of the fiber. We train the DNNs using 16,000 images of handwritten digits of the MNIST database and we test the accuracy of classification and reconstruction on another 2,000 new digits. Very positive results and robustness were observed for up to 1 km long MMF showing 90% reconstruction fidelity. The classification accuracy of the system for different inputs (phase-only, amplitude-only, hologram intensity etc.) to the DNN classifier was also tested.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés