Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Universal Scaling Law for Jets of Collapsing Bubbles
 
research article

Universal Scaling Law for Jets of Collapsing Bubbles

Obreschkow, Danail  
•
Tinguely, Marc  
•
Dorsaz, Nicolas  
Show more
2011
Physical Review Letters

Cavitation bubbles collapsing and rebounding in a pressure gradient del p form a "microjet" enveloped by a "vapor jet." This Letter presents unprecedented observations of the vapor jets formed in a uniform gravity-induced del p, modulated aboard parabolic flights. The data uncover that the normalized jet volume is independent of the liquid density and viscosity and proportional to zeta equivalent to vertical bar del p vertical bar R-0/Delta p, where R-0 the maximal bubble radius and Delta p is the driving pressure. A derivation inspired by "Kelvin-Blake" considerations confirms this law and reveals its negligible dependence of surface tension. We further conjecture that the jet only pierces the bubble boundary if zeta greater than or similar to 4 X 10(-4).

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés