Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Development of a contactless capacitive immunosensor
 
doctoral thesis

Development of a contactless capacitive immunosensor

Perruche, Brice Emmanuel
2011

In the present work, a label-free, contactless and capacitive immunosensor is developed using impedance spectroscopy, in the aim to perform low-cost immunoassays. Chapter 1 puts this work in perspective with some existing techniques, while a presentation of impedance theory used in this work is carried out in chapter 2. In Chapter 3, numerical simulations using a commercial finite element method software is carried out. The response of coplanar and face-to-face designs using an insulating layer is studied with respect to a frequency ranging from 100 Hz to 10 MHz . Two levels of capacitance were observed across the frequency range : the low frequency capacitance created by the insulating layer and the high frequency capacitance created by the solution. These capacitances depend on parameters like the solution conductivity, the distance between the electrodes, the electrodes width or the insulating layer thickness. A dimensionless parameter is defined to evaluate the quality of the geometry at high frequencies. Microchips using a coplanar design are developed in Chapter 4. They are composed of two silver electrodes drilled in a PET sheet by laser photoablation. The design of both holder and of the microchips is optimized to increase as much as possible the signal-to-noise ratio. Bovine Serum Albumin is detected by a variation of the channel conductivity. Chapter 5 introduces the design of a sensor using electrodes made of a mass market aluminium foil. The study of the frequency response of the electrodes led to the creation of a discrete analytical model. The electrodes are then mounted into a holder using a face-to-face or coplanar design. The system is characterized through the variation of several geometrical parameters (height of fluid in the reservoir, electrode surface area, solution conductivity, ...). The coplanar design is also optimized to be able to work in a holder equipped with a fluidic channel. Finally, the ability of the aluminium electrodes based sensor to monitor an adsorption is studied in Chapter 6. The resonance is used to detect the adsorption of proteins like BSA on the electrodes using coplanar and face-to-face designs. The adsorption is found to follow a Langmuir isotherm and an adsorption equilibrium constant is extracted. The second adsorbate layer is detected using a coplanar design, enabling the achievement of a immunoassay.

  • Files
  • Details
  • Metrics
Type
doctoral thesis
DOI
10.5075/epfl-thesis-4763
Author(s)
Perruche, Brice Emmanuel
Advisors
Girault, Hubert  
Date Issued

2011

Publisher

EPFL

Publisher place

Lausanne

Thesis number

4763

Total of pages

274

Subjects

Immunosensor

•

biosensor

•

label-free

•

contactless

•

capacitive

•

impedance

•

capteur immunologique

•

biocapteur

•

sans-marqueur

•

sans-contact

•

capacitif

•

impédance

EPFL units
LEPA  
Faculty
SB  
School
ISIC  
Doctoral School
EDCH  
Available on Infoscience
June 3, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/50570
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés