Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Unsupervised Camera Localization in Crowded Spaces
 
conference paper

Unsupervised Camera Localization in Crowded Spaces

Alahi, Alexandre  
•
Wilson, Judson
•
Fei-Fei, Li
Show more
2017
2017 IEEE International Conference on Robotics and Automation (ICRA)
IEEE International Conference on Robotics and Automation (ICRA)

Existing camera networks in public spaces such as train terminals or malls can help social robots to navigate crowded scenes. However, the localization of the cameras is required, i.e., the positions and poses of all cameras in a unique reference. In this work, we estimate the relative location of any pair of cameras by solely using noisy trajectories observed from each camera. We propose a fully unsupervised learningtechniqueusingunlabelledpedestriansmotionpatterns captured in crowded scenes. We first estimate the pairwise camera parameters by optimally matching single-view pedestrian tracks using social awareness. Then, we show the impact of jointly estimating the network parameters. This is done by formulating a nonlinear least square optimization problem, leveraging a continuous approximation of the matching function. We evaluate our approach in real-world environments such as train terminals, whereseveralhundredsofindividualsneedtobetrackedacross dozens of cameras every second.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés