Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mechanism of Pyridine-Ligand Exchanges at the Different Labile Sites of 3d Heterometallic and Mixed Valence μ3-oxo Trinuclear Clusters
 
research article

Mechanism of Pyridine-Ligand Exchanges at the Different Labile Sites of 3d Heterometallic and Mixed Valence μ3-oxo Trinuclear Clusters

Novitchi, Ghenadie
•
Riblet, Fabrice  
•
Scopelliti, Rosario  
Show more
2008
Inorganic Chemistry

The syntheses and single crystal X-ray structural analysis of five novel hetero- and homometallic μ3-oxo trinuclear cluster with the formula [FeIII2MII(μ3-O)(μ-O2CCH3)6(4-Rpy)3] · x(4-Rpy) · y(CH3CN) where R ) Ph for 1(Fe2Mn),2(Fe2Fe), 3(Fe2Co), 4(Fe2Ni) and R ) CF3 for 5(Fe2Co), are reported. The persistence of the structure for compounds 2-5 in dichloromethane solution in the temperature range 190-320 K is demonstrated by 1H and 19F NMR spectroscopy. Even at the lowest temperature, the electron exchange in the homometallic mixed-valence compound 2(Fe2Fe) is in the fast regime at the NMR time scale. Variable temperature and pressure NMR line broadening allowed quantifying the fast coordinated/free 4-Rpy exchanges at the two labile metal centers in these clusters: 2: FeIII(k298/103 s-1 ) 16.6; ΔH‡ ) 60.32 kJ mol-1; ΔS‡ ) + 34.8 J K-1 mol-1; ΔV‡ ) + 12.5 cm3 mol-1); 3: Fe(11.9; 58.92; +30.7; +10.6) and Co (2.8; 68.24; +49.8; +13.9); 4: Fe(12.2; 67.91; +61.0; -) and Ni (0.37;78.62; +67.8; +12.3); 5: Fe (46; 58.21; +39.3; +14.2) and Co (4.7; 55.37; +11.2; +10.9). A limiting D mechanism is assigned to these exchange reactions. This assignment is based on a first-order rate law, the detection of intermediates, the positive and large entropies and volumes of activation. The order of reactivity kCo > kNi is expected for a D mechanism at these metal centers: their low exchange rates are due to their strong binding with the 4-Rpy donor. Surrounded by oxygen donors the d5 iron(III) usually reacts associatively; however, here due to low affinity of this ion for nitrogen the mechanism is D and the rate of exchange is very fast, even faster than on the divalent ions. There is no significant effect of the divalent ion in cluster 2, 3, and 5 on the exchange rates of 4-Phpy at the iron center, which seems to indicate that the specific electronic interactions between the three ions making the clusters do not influence the FeIII-N bond strength.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1021/ic801206m
Web of Science ID

WOS:000260791100054

Author(s)
Novitchi, Ghenadie
Riblet, Fabrice  
Scopelliti, Rosario  
Helm, Lothar  
Gulea, Aurelian
Merbach, André E.  
Date Issued

2008

Published in
Inorganic Chemistry
Volume

47

Issue

22

Start page

10587

End page

10599

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCIB  
Available on Infoscience
December 10, 2008
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/32326
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés