Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Finite Bit Quantization For Decentralized Learning Under Subspace Constraints
 
conference paper

Finite Bit Quantization For Decentralized Learning Under Subspace Constraints

Nassif, Roula  
•
Vlaski, Stefan  
•
Antonini, Marc
Show more
January 1, 2022
2022 30Th European Signal Processing Conference (Eusipco 2022)
30th European Signal Processing Conference (EUSIPCO)

In this paper, we consider decentralized optimization problems where agents have individual cost functions to minimize subject to subspace constraints that require the minimizers across the network to lie in low-dimensional subspaces. This constrained formulation includes consensus optimization as special case, and allows for more general task relatedness models such as multitask smoothness and coupled optimization. In order to cope with communication constraints, we propose and study a quantized differential based approach where the communicated estimates among agents are quantized. The analysis shows that, under some general conditions on the quantization noise, and for sufficiently small step-sizes mu, the strategy is stable in the mean-square error sense. The analysis also reveals the influence of the gradient and quantization noises on the performance.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés