Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Low p-type contact resistance by field-emission tunneling in highly Mg-doped GaN
 
research article

Low p-type contact resistance by field-emission tunneling in highly Mg-doped GaN

Okumura, Hironori
•
Martin, Denis
•
Grandjean, Nicolas  
2016
Applied Physics Letters

Mg-doped GaN with a net acceptor concentration (NA-ND) in the high 10 19 cm(-3) range was grown using ammonia molecular-beam epitaxy. Electrical properties of NiO contact on this heavily doped p-type GaN were investigated. A potential-barrier height of 0.24 eV was extracted from the relationship between N-A-N-D and the specific contact resistivity (rho c). We found that there is an optimum N-A-N-D value of 5 x 10(19) cm(-3) for which rho c is as low as 2 x 10(-5) Omega cm(2). This low rho c is ascribed to hole tunneling through the potential barrier at the NiO/p(+)-GaN interface, which is well accounted for by the field-emission model. Published by AIP Publishing.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés