Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. High-Dimensional Bayesian Clustering with Variable Selection: The R Package bclust
 
research article

High-Dimensional Bayesian Clustering with Variable Selection: The R Package bclust

Nia, Vahid Partovi  
•
Davison, Anthony C.  
2012
Journal Of Statistical Software

The R package bclust is useful for clustering high-dimensional continuous data. The package uses a parametric spike-and-slab Bayesian model to downweight the effect of noise variables and to quantify the importance of each variable in agglomerative clustering. We take advantage of the existence of closed-form marginal distributions to estimate the model hyper-parameters using empirical Bayes, thereby yielding a fully automatic method. We discuss computational problems arising in implementation of the procedure and illustrate the usefulness of the package through examples.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Journal of Statistical Software 2012 Nia.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

644.52 KB

Format

Adobe PDF

Checksum (MD5)

2049f4552eec18b9ab4f45a0545925ef

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés