Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Plasma blobs in a basic toroidal experiment: Origin, dynamics, and induced transport
 
research article

Plasma blobs in a basic toroidal experiment: Origin, dynamics, and induced transport

Mueller, S. H.
•
Diallo, Ahmed  
•
Fasoli, Ambrogio  
Show more
2007
Physics of Plasmas

Detaching plasma blobs with very similar properties to tokamaks are observed in the basic toroidal plasma experiment TORPEX [ A. Fasoli et al., Phys. Plasmas 13, 055902 (2006) ]. The blobs originate from the breaking of wave crests of a drift-interchange wave, which span over regions characterized by strongly inhomogeneous background parameters. Once decoupled from the wave, the blobs follow a predominantly radial trajectory pattern. The blob-induced cross-field transport can instantaneously exceed the steady-state parallel fluxes by one order of magnitude, while accounting for only 10% of the time-average device losses. If the particles were confined in the parallel direction, as is the case in tokamaks, blobs would constitute the dominant loss mechanism in TORPEX. The presented results show that the presence of grad B is sufficient and neither a magnetic-topology change nor the presence of limiters, both absent in TORPEX, are necessary for the generation of blobs.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés