Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Numerical and analytical simulations of Suspended Gate - FET for ultra-low power inverters
 
Loading...
Thumbnail Image
conference paper

Numerical and analytical simulations of Suspended Gate - FET for ultra-low power inverters

Tsamados, D.
•
Chauhan, Y. S.  
•
Eggimann, C.
Show more
2007
Essderc 2007: Proceedings Of The 37Th European Solid-State Device Research Conference
37th European Solid-State Device Research Conference

This paper proposes, for the first time, the investigation of the SG-FET small slope switch based on a hybrid numerical simulation approach combining ANSYS (TM) Multiphysics and ISE-DESSIS (TM) in a self-consistent system. The proposed hybrid numerical simulations uniquely enables the investigation of the physics of complex Micro-Electro-Mechanical/solid-state devices, such as SG-FET. Abrupt switching and effect of gate charges are demonstrated. The numerical data serves to calibrate an analytical EKV-based SG-FET model, which is the used to design and originally simulate a sub-micron (90nm) scaled SG-FET complementary inverter. It is demonstrated that, due to abrupt switch in the subthreshold region and electro-mechanical hysteresis, the SG-FET inverter provides significant power saving (1-2 decades reduction of inverter peak current and practically, no leakage power) compared with traditional CMOS inverter.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés