Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Interactive effects of depth and temperature on CH4 and N2O flux in a shallow podzol
 
research article

Interactive effects of depth and temperature on CH4 and N2O flux in a shallow podzol

Mills, R. T. E.  
•
Dewhirst, N.
•
Sowerby, A.
Show more
2013
Soil Biology & Biochemistry

Measuring and modelling the efflux of greenhouse gases from soils is crucial for gauging ecosystem responses to climate and land-use change, and potential contributions and feedbacks to gas emissions. Upland soils with high amounts of organic matter can produce large effluxes of CH4 and potentially N2O, and therefore understanding the sensitivity of such fluxes to changes in climate (e.g. temperature) is of importance. Here we consider the role of shallow podzols in the temperature response of CH4 and N2O efflux using a simple laboratory incubation. Such soils have a shallow peat layer overlain by coarse organic matter, and by splitting and incubating these layers across a 1-30 degrees C temperature ramp, we observed a significant negative temperature response for both gases, and a gas-dependent effect on the presence of a between-layer difference. Given these observations, there is a need to consider the temperature sensitivity of near surface layers as distinct, and to recognise the potential for shallow podzols to have a strong source sink transition across temperature ranges. (C) 2013 Elsevier Ltd. All rights reserved.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés