Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. MOLED: simulation of multilayer organic light emitting diodes
 
research article

MOLED: simulation of multilayer organic light emitting diodes

Houili, H.  
•
Tutis, E.
•
Lütjens, H.
Show more
2003
Computer Physics Communications

MOLED solves the dynamics of electrons and holes in multilayer organic light emitting diodes (OLED). The carriers are injected on the positive and negative electrodes of the device by tunneling through a potential barrier. Thermal excitation processes across the barrier are also included. In the interior of the device the electron-hole recombination occurs when the two carriers are close enough, according to a model inspired from the one of Langevin. A fraction of these recombined pairs gives photons. The charge transport inside the organic material occurs through hopping. Several choices of mobility formulae are available in the code. MOLED can be used for OLEDs with an arbitrary number of layers. The output consists of numerous fields that describe the device performance. For example, there are the current, the recombination and the charge density distributions, the electric field distribution, the current-voltage characteristics and the device internal quantum efficiency

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés