Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Kazhdan's Property (T) and Property (FH) for measured groupoids
 
doctoral thesis

Kazhdan's Property (T) and Property (FH) for measured groupoids

Gippa, Christophe Michel  
2018

Introduced 50 years ago by David Kazhdan, Kazhdan's Property (T) has quickly become an active research area in mathematics, with a lot of important results. A few years later, this property has been generalized to discrete group actions by Robert J. Zimmer. Then, more recently, Claire Anantharaman-Delaroche has generalized it to measured groupoids.

In this work, we will continue to study this property for measured groupoids. We will introduce a Property (T) via compact sets for locally compact group actions, which is a generalization of the Property (T) for discrete group actions of R. J. Zimmer. We will develop Kazhdan's Property (T) for measured groupoids, and, for transformation group groupoids, a close link between these two properties will be proved. Then we will define and study a generalization of Property (FH) for measured groupoids. Finally, we will prove a generalization to measured groupoids of the Delorme-Guichardet theorem, which states an equivalence between Property (FH) and Property (T). This has also been proved by C. Anantharaman-Delaroche, but in a different context.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH8755.pdf

Access type

restricted

Size

7.01 MB

Format

Adobe PDF

Checksum (MD5)

f860b0b83994ba69a92c8187348dc601

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés