Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Vesicle Photonics
 
research article

Vesicle Photonics

Vasdekis, Andreas E.
•
Scott, Evan Alexander  
•
Roke, Sylvie  
Show more
2013
Annual Review of Materials Research

Amphiphiles, under appropriate conditions, can self-assemble into nanoscale thin membrane vessels (vesicles) that encapsulate and hence protect and transportmolecular payloads.Vesicles assemble naturally within cells but can also be artificially synthesized. In this article, we review the mechanisms and applications of light-field interactions with vesicles. By being associated with light-emitting entities (e.g., dyes, fluorescent proteins, or quantum dots), vesicles can act as imaging agents in addition to cargo carriers. Vesicles can also be optically probed on the basis of their nonlinear response, typically from the vesicle membrane.Light fields can be employed to transport vesicles by using optical tweezers (photon momentum) or can directly perturb the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy).We conclude with emerging vesicle applications in biology and photochemical microreactors.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés