Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Multi-Objective Parametric Query Optimization
 
conference paper

Multi-Objective Parametric Query Optimization

Trummer, Immanuel  
•
Koch, Christoph  
2015
Sigmod Record
VLDB

Classical query optimization compares query plans according to one cost metric and associates each plan with a constant cost value. In this paper, we introduce the Multi-Objective Parametric Query Optimization (MPQ) problem where query plans are compared according to multiple cost metrics and the cost of a given plan according to a given metric is modeled as a function that depends on multiple parameters. The cost metrics may for instance include execution time or monetary fees; a parameter may represent the selectivity of a query predicate that is unspecified at optimization time. MPQ generalizes parametric query optimization (which allows multiple parameters but only one cost metric) and multi-objective query optimization (which allows multiple cost metrics but no parameters). We formally analyze the novel MPQ problem and show why existing algorithms are inapplicable. We present a generic algorithm for MPQ and a specialized version for MPQ with piecewise-linear plan cost functions. We prove that both algorithms find all relevant query plans and experimentally evaluate the performance of our second algorithm in a Cloud computing scenario.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés