Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Trans-inhibition of glutamate transport prevents excitatory amino acid-induced glycolysis in astrocytes
 
research article

Trans-inhibition of glutamate transport prevents excitatory amino acid-induced glycolysis in astrocytes

Debernardi, R
•
Magistretti, P J  
•
Pellerin, L
2000
Brain research

Previous studies have demonstrated that activation of glutamate transporters promotes glycolysis in astrocytes. Current evidence indicates that compounds such as threo-beta-hydroxyaspartate (THA) are both competitive inhibitors and substrates for glutamate transporters. In this study, we have analyzed the effect of THA on excitatory amino acid (EAA) transport and on EAA-induced glycolysis in mouse primary astrocyte cultures. In agreement with previous studies in rat astrocytes, THA competitively inhibited 3H-D-aspartate (3H-D-Asp) uptake with an IC50 of 319 microM (Ki = 36.6 microM). In contrast, it did not prevent D-aspartate-induced 3H-2-deoxyglucose (2DG) uptake in these conditions. Preexposure of cells to THA for at least 15 min revealed another form of glutamate transport inhibition. This effect was concentration-dependent with an apparent IC50 of 47.7 microM and showed kinetic characteristics consistent with a mechanism of trans-inhibition. Preincubation with THA also inhibited D-aspartate-induced 3H-2DG uptake in a concentration-dependent manner with an apparent IC50 of 59.8 microM. Comparison with other transportable analogues reveals that they share with THA the ability to cause trans-inhibition of glutamate transport and to prevent glutamate-stimulated glycolysis; THA, however, is unique in that it has no effect alone on glucose utilization after preexposure. These data indicate that trans-inhibition of glutamate transport may be a mechanism by which certain glutamate transport inhibitors can prevent the stimulation of aerobic glycolysis by glutamate in astrocytes.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés