Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Sweat monitoring with CMOS compatible technology: ISFETS and beyond
 
doctoral thesis

Sweat monitoring with CMOS compatible technology: ISFETS and beyond

Bellando, Francesco  
2020

In recent years, sweat has gained increasing attention from the scientific community as a new analyte for health monitoring. The main advantage with respect to the "Gold Standard" for laboratory analysis, i.e. blood, is of course the possibility of performing non-invasive assays, granting the maximum comfort for the user. Sweat contains a wide collection of relevant biomarkers, such as ions (Na+, K+, Mg+, Ca++...) and biomolecules (lactate, cortisol, cholesterol...). The most widespread technology for wearable sweat sensors, as of now, consists in the employ of big electrodes for potentiometric detection of target markers. This strategy, on top of not being CMOS-compatible and therefore harder to integrate in a complex wearable system (e. g. a smartwatch), requires a huge amount of sweat, which is produced only under intense heath or physical activity. Ion-Sensitive Field-Effect Transistors (ISFETs), on the other hand, can be made extremely small without reducing their sensing performances, allowing monitoring of sweat composition at very low sweating rates, compatible with at-rest values. In this work, such advantage is pursued via the integration of a low-volume capillary microfluidics, with a capacity of just a few hundreds of nanoliters, on a chip containing a set of Fully-Depleted Silicon-On-Insulator FETs (FD SOI FETs) and miniaturized Ag/AgCl Reference Electrodes (mREs). This system, able to host up to four different functionalizations, each for monitoring a specific sweat biomarker, is capable of collecting sweat from the skin of an user at rest, passively driving it in contact with the sensors, and readily transducing the chemical parameters measured by the functionalized gates in an electric signal, which is then analyzed by the read-out system, providing data on the composition of the analyte and, therefore, on the health condition of the wearer. The fabricated devices showed excellent performances in terms of both electrical characterization and biomarker sensitivity: the FETs characterized with a metal gate have shown an ION/IOFF ratio of 106, a nearly-ideal Subthreshold Swing (SS) of just 65 mV/dec, a hysteresis free characteristics and fully ohmic contacts on ultra-thin silicon. The threshold voltage (Vth) shifts linked to a tenfold variation in the biomarkers concentrations also reached the nearly-ideal values of 55 to 60 mV/dec, and extremely linear dependence over a wide range of dilutions. One of the strengths of the ISFET technology is its ability to exploit technological progresses of MOSFETs for computing. For this reason, in the final part of this thesis we have investigated the application to sensors of one of the latest strategies for the improvement of MOSFET performances: the Negative Capacitance (NC). Addition of a ferroelectric capacitor (Fe-Cap) to the gate stack of our sensors reduced their SS by 21%, therefore improving their current sensitivity by 26%. The measured Current Efficiency also improved. Further experiments employing different sets of Fe-Caps and pulsed mode measurements, moreover, demonstrated a SS six times lower than the one of the baseline ISFETs and three times lower than the thermionic limit, paving the way to a new class of sensors with ideality factor larger than 1.

  • Files
  • Details
  • Metrics
Type
doctoral thesis
DOI
10.5075/epfl-thesis-7464
Author(s)
Bellando, Francesco  
Advisors
Ionescu, Mihai Adrian  
Jury

Dr Jean-Michel Sallese (président) ; Prof. Mihai Adrian Ionescu (directeur de thèse) ; Prof. Hatice Altug, Prof. Carlo Ricciardi, Prof. Muhammad Ashraful Alam (rapporteurs)

Date Issued

2020

Publisher

EPFL

Publisher place

Lausanne

Public defense year

2020-01-24

Thesis number

7464

Total of pages

182

Subjects

Sweat sensing

•

Ion-Sensitive Field-Effect Transistors (ISFETs)

•

microfluidics

•

functionalization

•

wearable sensors

•

low-power

•

label-free sensor

•

steep slope

•

heterogeneous integration

•

Negative Capacitance

EPFL units
NANOLAB  
Faculty
STI  
School
IEL  
Doctoral School
EDMI  
Available on Infoscience
January 20, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/164714
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés