Forward-reflected-backward method with variance reduction
We propose a variance reduced algorithm for solving monotone variational inequalities. Without assuming strong monotonicity, cocoercivity, or boundedness of the domain, we prove almost sure convergence of the iterates generated by the algorithm to a solution. In the monotone case, the ergodic average converges with the optimal O(1/k) rate of convergence. When strong monotonicity is assumed, the algorithm converges linearly, without requiring the knowledge of strong monotonicity constant. We finalize with extensions and applications of our results to monotone inclusions, a class of non-monotone variational inequalities and Bregman projections.
2021-08-19
80
321
346
This is an Open Access article under the terms of the Creative Commons Attribution License
REVIEWED
EPFL