Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Local interface composition and extended defect density in ZnSe/GaAs(001) and ZnSe/In0.04Ga0.96As(001) heterojunctions
 
research article

Local interface composition and extended defect density in ZnSe/GaAs(001) and ZnSe/In0.04Ga0.96As(001) heterojunctions

Heun, S.
•
Paggel, J. J.
•
Sorba, L.
Show more
1997
Journal of Vacuum Science & Technology B

We have recently shown that in II-VI/III-V heterojunctions and related devices fabricated by molecular beam epitaxy, the II/VI flux ratio employed during the early stages of II-VI growth can be used to control the local interface composition and the band alignment. Here we demonstrate that the local interface composition in pseudomorphic, strained ZnSe/GaAs(001) heterostructures as well as lattice-matched ZnSe/In0.04Ga0.96As(001) heterostructures also have a dramatic effect on the nucleation of native stacking fault defects. Such extended defects have been associated with the early degradation of blue-green lasers. We found, in particular, that Se-rich interfaces consistently exhibited a density of Shockley stacking fault pairs below our detection limit and three to four orders of magnitude lower than those encountered at interfaces fabricated in Zn-rich conditions. (C) 1997 American Vacuum Society. [S0734-211X(97)09104-X].

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés