Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Competitive calcium binding: implications for dendritic calcium signaling
 
research article

Competitive calcium binding: implications for dendritic calcium signaling

Markram, H.  
•
Roth, A.
•
Helmchen, F.
1998
Journal of computational neuroscience

Action potentials evoke calcium transients in dendrites of neocortical pyramidal neurons with time constants of < 100 ms at physiological temperature. This time period may not be sufficient for inflowing calcium ions to equilibrate with all present Ca2+-binding molecules. We therefore explored nonequilibrium dynamics of Ca2+ binding to numerous Ca2+ reaction partners within a dendritelike compartment using numerical simulations. After a brief Ca2+ influx, the reaction partner with the fastest Ca2+ binding kinetics initially binds more Ca2+ than predicted from chemical equilibrium, while companion reaction partners bind less. This difference is consolidated and may result in bypassing of slow reaction partners if a Ca2+ clearance mechanism is active. On the other hand, slower reaction partners effectively bind Ca2+ during repetitive calcium current pulses or during slower Ca2+ influx. Nonequilibrium Ca2+ distribution can further be enhanced through strategic placement of the reaction partners within the compartment. Using the Ca2+ buffer EGTA as a competitor of fluo-3, we demonstrate competitive Ca2+ binding within dendrites experimentally. Nonequilibrium calcium dynamics is proposed as a potential mechanism for differential and conditional activation of intradendritic targets.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés