Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Conducting barriers for direct contact of PZT thin films on reactive substrates
 
research article

Conducting barriers for direct contact of PZT thin films on reactive substrates

Maeder, Thomas  
•
Muralt, Paul  
•
Sagalowicz, Laurent
Show more
1999
Journal of the Electrochemical Society

Several bottom electrode systems for ferroelectric thin film deposition onto reactive substrates or reactive metal films have been investigated with respect to chemical barrier properties and contact resistivity. Such electrode systems should not deteriorate by oxidation, and should prevent oxygen diffusion into the underlying base metal. First, the protective performance of Pt, Ru, RuO2/Ru, and Cr has been evaluated on reactive substances such as W, Zr, Mo, and TiN; On most materials, a reactive and passivating metal such as Cr offers protection up to a higher temperature than noble metals. This is explained by preferential oxidation. On Cr, a RuO2 electrode allowed oxidation resistance to more than 800 degrees C without any Cr diffusion: the RuO2 serves both as an electrode and as a barrier to Cr. In order to reduce the contact resistance due to the formation of a Cr2O3 film at the RuO2/Cr interface, a Ru interlayer was inserted, giving an RuO2/Ru/Cr. This combination allowed maintaining a low contact resistance up to 700 degrees C. (C) 1999 The Electrochemical Society. S0013-4651(98)12-012-8. All rights reserved.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1149/1.1392484
Web of Science ID

WOS:000082607600039

Author(s)
Maeder, Thomas  
Muralt, Paul  
Sagalowicz, Laurent
Setter, Nava  
Date Issued

1999

Publisher

Electrochemical Society

Published in
Journal of the Electrochemical Society
Volume

146

Issue

9

Start page

3393

End page

3397

Subjects

deposition

•

oxidation

•

zirconium

Note

Maeder, T EPFL, Swiss Fed Inst Technol, Lab Ceram, CH-1015 Lausanne, Switzerland EPFL, Swiss Fed Inst Technol, Lab Ceram, CH-1015 Lausanne, Switzerland, 236PK, Times Cited:13, Cited References Count:21

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LC  
Available on Infoscience
August 21, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/233388
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés